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Abstract—We consider the Network Utility Maximization
Problem with a non-concave, monotonically increasing objective
function. Non-concave utility functions model inelastic traffic
flows. Maximization of a non-concave function over a closed,
convex set is a non-convex programming problem. In this paper
we establish a necessary and sufficient global optimality condition
for problems with a monotonic objective function. On the basis
of this result we propose a numerical method for solving a class
of monotonic problems.

I. INTRODUCTION

A Network Utility Maximization (NUM) Problem is de-
fined as follows.

maximize
∑

s∈S fs(xs) (1)
subject to

∑
s∈S(l) xs ≤ cl, ∀l ∈ L (2)

x ≥ 0, (3)

where S is a set of sources, L is links connecting sources, xs

for s ∈ S is a transmission rate of s-th source, cl for l ∈ L is a
capacity of l-th link, S(l) for l ∈ L is a number of transmission
sources using l-th link. fs for s ∈ S is utility function of the
s-th source. The problem is to find transmission rate of each
sources maximizing total network utility at given capacity of
the links.
Utility functions fs for s ∈ S are often assumed to be strongly
concave. This assumption much simplifies the problem mathe-
matically. Strongly concave functions model only elastic traffic
flows. This leads to mainly convex minimization problems with
well established theory and algorithms based on Lagrangian
functions.

When traffic flows are inelastic, utility functions can be
nonconcave. However it has practical importance and this case
has received little attention until recent publications by Chiang
et al. [2], Lee et al. [3], mainly because of computational
complexity. When it deals with a nonconvex problems, partic-
ularly convex maximization problems, finding an exact global
optimal solution numerically is NP-hard [4]. The standard
outer approximation method [4] for convex maximization was
adapted for the solving monotonic optimization problem in
[9]. This approach is based on the approximation of compact
normal sets by simple normal sets called polyblocks.

The problem of maximizing monotonic function under
monotonic constraints have been discussed in [8]. In this work

Polyblock outer approximation algorithm has been proposed
for maximizing increasing functions over intersection of a
compact normal set with so called reverse normal set.

In this paper, we propose a global optimality condition
for solving the Network Utility Maximization /NUM/ problem
with a monotonic increasing utility function. This paper is
organized as follows. In the first section we reformulated prob-
lem (1)-(3) as a global optimization problem and introduced
new lower bound constraints to make the model more realistic.
Common types of nonconcave utility functions have been
considered and classified from the computational complexity
point of view.
In the second section we derived a new necessary and sufficient
condition for the network utility maximization problem with a
monotonic objective function.
In the third section we constructed a numerical algorithm for
the NUM problem based on the global optimality conditions.
Some numerical results are provided.

II. CLASSIFICATION OF NETWORK UTILITY
MAXIMIZATION PROBLEM

We can reformulate problem (1)-(3) as follows.

maximize
S∑

j=1

fj(xj) (4)

subject to
S∑

j=1

dijxj ≤ ci, ∀i = 1, ..., L (5)

x ≥ 0, (6)

where S is number of sources, L is number of links connecting
sources, dij ∈ {0, 1} and dij = 1 if i-th source transmits signal
using j-th link.
However in an initial formulation of problem (1)-(3) trans-
mission rates are assumed to be nonnegative, it is useful
to consider a case in which transmission rate xj for all
j = 1, ..., S is above some fixed level. Otherwise, some
transmission rate can take a value equal to zero which means
that its source is totally discriminated and will not emit any
signal. It is unnatural. That is why we include to the NUM
problem additional constraints bounding below transmission
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rates. Then problem (4)-(6) takes the following form.

maximize
S∑

j=1

fj(xj) (7)

subject to
S∑

j=1

dijxj ≤ ci, ∀i = 1, ..., L (8)

x ≥ lb > 0, (9)

where vector lb ∈ RS and lbj is the lowest possible level of
transmission rate for j-th source.

Problem (1)-(3) has been considered in [2] for the case
fj(xj) = x2

j , fj(xj) = x3
j and fj(xj) = 1

1+e−axj−bj
, and

sum-of-squares (SOS) method is applied to solve it.

When function fj is convex for all j = 1, ..., S then
the problem is treated as a convex maximization problem.
Convex maximization problem has found many applications
in engineering and finding its exact global optimal solution
numerically is NP-hard [4]. The problem complexity is still
kept unchanged even in the case of simple bound constrained
problems [4]. For this type of problems an appropriate global
optimality condition and numerical algorithm can be found in
[1].

Let us consider some additional properties of the problem
for fj(xj) = 1

1+e−axj−bj
. We denote the objective function by

f(x) =
S∑

j=1

fj(xj). Clearly we have:

∇f(x) =
(

df1

dx1
(x1), ...,

dfS

dxS
(xS)

)
, (10)

∇2f(x) =




d2f1
dx2

1
(x1) 0 ... 0

0
. . . 0

...
. . .

...
0 ... 0 d2fS

dx2
S

(xS)




.(11)

Proposition 1.

a. The objective function has zero second order
derivative when xj = − bj

aj
for all j = 1, ..., S.

b. It is natural to assume about the network architec-
ture that for all j = 1, ..., S there exists at least
one i = 1, ..., S satisfying dij = 1. Otherwise,
j-th link has no application. In addition to this
assumption, if it holds the following inequality

min
i:

{
1≤i≤L

dij=1

ci ≤ − bj

aj
for all j = 1, ..., S,(12)

then the objective function f is strictly convex.

Proof. a. By solving the following system of S independent
equations we get the result.

f ′′j (xj) = 0, for j = 1, ..., S.

b. From constraints (8)-(9) it implies that

dijxj ≤ ci

for all i = 1, ..., L and j = 1, ..., S. We can write it
equivalently as:

xj ≤ min
i:

{
1≤i≤L

dij=1

ci

for all j = 1, ..., S. Therefore, if we assume that condition
(12) is true then we obtain:

xj ≤ − bj

aj

for all j = 1, ..., S. Under this condition the second order
derivatives of the utility functions are positive, so fj(xj) are
strictly convex for j = 1, ..., S. Thus objective function f is
also strictly convex as a sum of strictly convex functions [6].

Based on Proposition 1, we can classify problem (7)-(9) as
follows.

A. Concave maximization problem

Let us consider the case when it holds:

lbj ≥ − bj

aj
for j = 1, ..., L. (13)

In this case, the lower bounds lbj on transmission rates xj

are high enough so that the objective function became strictly
concave and canonical algorithms for the NUM problem will
find a global optimal solution in polynomial time. It is a
well studied part of nonlinear programming. We will omit
discussion on it as a trivial case. Brief summary on canonical
algorithms can be found in Chiang et al. [2].

B. Convex maximization problem

If link capacities are small enough, i.e. if inequalities (12) hold,
then problem (7)-(9) becomes a convex maximization problem.
In this case the problem is NP -hard. For global optimality
condition and numerical algorithm for this type of problem
we refer to [1].

C. General nonconcave maximization problem

If neither conditions (12) nor (13) hold the second order
derivative (11) have both positive and negative diagonal entries,
so the objective function f is neither concave nor convex.
In this case the problem is classified as global optimization
problem of general type. Special methods and algorithms will
be employed for solving it.

In our further investigations, we will focus on the monotonic
maximization problem as a special case of the nonconcave
maximization problem.

III. THE GLOBAL OPTIMALITY CONDITION

Consider the following separable optimization problem

max
x∈D

S∑
j=1

fj(xj), (14)

where a constraint set D is a convex compact subset of RS ,
functions fj : R → R, j = 1, ..., S are continuous and strictly
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increasing. We introduce the following notations

f(x) =
S∑

j=1

fj(xj), (15)

D+(y) = {x ∈ D : xj ≥ yj for all j = 1, ..., S},(16)
Eα(f) = {x ∈ Rn : f(x) = α}, α ∈ R, (17)

Set Eα(f) is referred as a level set of function f . We formulate
necessary and sufficient condition for problem (14) in the
following theorem.

Theorem 1. A point z ∈ D is the global solution to (14) if
and only if

intD+(y) = ∅ for all y ∈ Lf(z)(f). (18)

Proof. Necessity. Assume that z is a global solution, that is,

f(x) ≤ f(z) ∀x ∈ D. (19)

Suppose that there exists x ∈ intD+(y) for some y ∈
Ef(z)(f). It implies

xj > yj for all j = 1, ..., S.

Since fj is strictly increasing, we have fj(xj) > fj(yj) for
all j = 1, ..., S. Consequently, by (15) we get

f(x) > f(y) = f(z).

which contradicts our assumption (19) on z.

Sufficiency. Assume that (18) holds for some z ∈ D and z is
not a global solution. That is

∃u ∈ D, f(u) > f(z). (20)

Since D is compact, there exist vj ∈ R satisfying

vj = min
x∈D

xj

for all j = 1, ..., S,. Let us define vectors v and h by

v = (v1, ..., vS)T and h = u− v.

Clearly h ≥ 0. Consider a line segment given by

x(t) = (u1 − th1, ..., uS − thS)T

for t ∈ [0; 1]. Since hj ≥ 0, each function xj(t) is decreasing
on [0; 1] for all j = 1, ..., S.

Define the function Φ by Φ(t) = f(x(t)) for t ≥ 0. It is clear
that

Φ(0) > f(z) > Φ(1). (21)

Since function Φ is continuous, it attains all intermediate
values between Φ(0) and Φ(1), i.e.

∃t ∈ [0; 1] such that Φ(t) = f(x(t)) = f(z).

Since vector function x(·) is componentwise decreasing, we
conclude that v > x. Therefore, we get

v ∈ intD+(x).

This contradicts assumption (18). The proof is complete.

IV. NUMERICAL ALGORITHM

Note that the optimality condition (18) requires checking
the set int D+(y) for emptiness for each y ∈ Ef(z)(f).
It is a hard problem. In order to implement this condition
numerically, we need to relax it by checking emptiness for
only a finite number of points of the level set. For this purpose,
we introduce the following definition.

Definition 1. Let define set the Am
z by

Am
z = {y1, y2, . . . , ym : yi ∈ Ef(z)(f), i = 1, 2, . . . , m}

(22)
is called the approximation set to the level set Ef(z)(f) at the
point z.

Lemma 1. If there exists u ∈ int D+(y) for y ∈ Ef(z)(f)
and z ∈ D, then f(u) > f(z).

Proof. The proof follows from Theorem 1.

Based on Theorem 1 and the above lemma we can construct
an algorithm for solving problem (14).

Algorithm NUM

Input: A separable and strictly monotonic objective function
f , a bounded, closed and convex polyhedral set D.
Output: An approximate solution z to problem (14) i.e., an
approximate global maximizer of f over D.

Step 1 Choose x0 ∈ RS and set k := 0.
Step 2 Find a local maximum zk of problem (14) using

a local method starting with x0 as an initial
approximation.

Step 3 Choose sufficiently large m and randomly gener-
ated directions h1, ..., hm ∈ RS such that hi

j ≥ 0
for all j = 1, ..., S and i = 1, ..., m. Solve univari-
ate equations f(αih

i) = f(zk) for αi employing
the bisection method for all i = 1, ..., m.

Step 4 Construct an approximation set Am
zk at the point

zk by selecting yi = αih
i for all i = 1, ..., m.

Step 5 For each yi ∈ Am
zk check set int D+(yi) for

emptiness solving the following linear program-
ming problem.

max
x∈D,
x≥yi

x1 + ... + xS .

If exists i0 and solution xi0 to the above problem
such that xi0 6= yi0 then select x0 = xi0 and Goto
Step 5, otherwise Go to Step 6.

Step 6 zk is an approximate global maximizer and ter-
minate.

We can easily see that if the optimality condition (18) is
not satisfied at each zk then the sequence f(zk) is a strictly
monotonic increasing sequence, i.e., f(zk+1) > f(zk). On the
other hand, the solving equation f(αih

i) = f(zk) for given hi

with respect to αi can be implemented in a polynomial time.
Since we can solve linear programming by interior methods at
each iteration, the algorithm terminates in a polynomial time
finding an approximate global solution for the given number
m. If we are not satisfied with the approximate global solution
found at a current iteration, there are two ways to improve this
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Fig. 1. Ring network with S = 6

solution. It can be done in the following way.
1)To increase a number of points of the level set of the function
at the current local maximizer.
2) To combine the current level set of the function at the local
maximizer zk with other global search methods such as inner,
outer approximations or branch and bound method.
The latter is beyond the scope of our paper and has to be be
examined in our further investigations in this direction.

In order to implement our proposed algorithm, we consid-
ered a network with ring topology with S users and S links
connecting

⌊
S
2

⌋
+ 1 subsequent users, where bαc denotes an

integer part of α(Figure 1). We have tested our approach for 12
test problems for maximizing sigmoidal utility functions with
randomly generated parameters aj and bj for all j = 1, ..., S.
Link capacities cj are also chosen randomly so that the
objective function stays neither convex nor concave over the
constraint set. The proposed algorithm was implemented in
MATLAB 7 on PC with Pentium IV 2.4GHz processor and
256 MB RAM. In all cases, the global solutions were found
by the algorithm. Results of numerical experiments are given in
Table I. In the table by N we denote an example number, by S
a number of variables of the test problem. The column labeled
by f0 contains an initial local optimal values. The approximate
global optimal values obtained by the proposed algorithm is
listed in the column labeled by f̃ . Columns marked with
Imp. % shows improvement in percent given by the formula:

f̃ − f0

f̃
∗ 100%.

A number of level set approximations required during
computation are shown in the column labeled by Appx.
A column with label Imp. /times/ contains a number of
improvements encountered by computation. A column marked

TABLE I.

Imp. Imp. Time
N S f0 f̃ % Appx. /times/ /h:m:s/
1 5 0.4964 0.68 27.00 150 1 0:00:2.363
2 5 1.0985 1.3054 15.85 150 1 0:00:2.504
3 5 1.5932 1.9993 20.31 150 2 0:00:3.044
4 9 3.6193 3.9577 8.55 81 2 0:00:2.063
5 10 1.0002 5.0001 80.00 100 2 0:00:2.063
6 10 2.0244 6.0049 66.29 100 2 0:00:2.494
7 11 1.061 1.0746 1.26 127 1 0:00:6.148
8 11 0.59376 1.1208 47.02 1210 1 0:00:6.099
9 11 0.38051 0.62501 39.12 1210 1 0:00:6.629
10 11 0.44026 1.3867 68.25 1210 1 0:00:5.939
11 15 4.0768 5.5082 25.99 225 2 0:00:3.515
12 27 0.17581 0.31421 44.05 7290 1 0:00:45.445

by Time/h : m : s/ contains computation time in hour :
minute : second format.

Example 1.

a=(0.10129, 0.041534, 12.152, 4.3175, 14.135)T ,
b=(-17, -4.2046, -0.07851, -6.7597, -9.5621)T ,
c=(336.28, 202.52, , 0.062225, 3.3959, 1.4018)T
x̃=(0, 1.4018, 0.0622, 0, 0)T .

Example 2.

a=(11.237, 7.4969, 2.336, 0.34878, 4.2607, )T ,
b=(-13.637, -6.7609, -12.834, -2.6612, -0.81216, )T ,
c=(0.74312, 1.1961, 4.6924, 3.616, 2.2573, )T ,
x̃=(0, 0.7431, 0, 0.4530, 1.5142)T .

Example 3.

a=(4.6136, 0.59055, 4.226, 0.14369, 2.9238, )T ,
b=(-1.9121, -12.408, -12.624, -6.2084, -9.8421, )T ,
c=(1.4886, 102.05, 14.46, , 206.94, 13.96, )T ,
x̃=(1.4886, 0, 0, 8.3439, 6.1165)T .

Example 4.

a = (1.6823, 2.4037, 0.64806, 0.39055, 0.016966, 10.192,
9.8806, 4.7697, 8.5486, )T ,
b=(-19.455, -0.051552 , -7.8483, -0.3408, -8.0184, -0.13108,
-5.038, -0.022219, -1.1896)T ,
c=(58.254, 0.79151, 60.642, 5.2232, 2363.8, 1.0301,
2.7945, 0.69306, 1.3808)T ,
x̃=(1.6823, 2.4037, 0.64806, 0.39055
0.016966, 10.192, 9.8806, 4.7697, 8.5486, )T .

Example 5.

a=(13.262, 14.346, 0.06523, 9.7665, 12.935, 5.4189,
12.995, 2.5366, 5.8157, 1.0793, )T ,
b=(-14.491, -26.1, -27.137, -10.561, -8.9898, -11.064, -29.4,
-5.6099, -16.605)T ,
c=(3.4182, 54.018, 58.754, 8.3209, 70.275, 93.594, 31.453,
85.115, 86.378,
35.158)T ,
x̃=(0, 1.6538, 0, 0, 1.5085, 0.2558, 1.6463, 0, 4.6237,
23.5294, )T .

Example 6.
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a=(10.318, 10.855, 5.0737, 5.4268, 0.5133, 13.592, 13.03,
0.35046, 4.9926, 5.4885, )T ,
b=(-16.314, -24.878, -26.05, -22.997, -13.936, -17.718, -
4.8455, -5.7467,
-6.4728, )T ,
c=(39.697, 71.747, 72.97, 5.9242, 81.472, 99.219, 57.065,
58.073, 60.385,
70.791, )T ,
x̃=(3.4536, 30.9639, , 2.7597, 0, 0, 1.5693, 1.9239, 0, 2.4310,
18.0718)T .

Example 7.

a=(6.18415, 10.1737, 12.057, 3.99671, 2.48311, 3.45971,
7.98772, 10.3249, 6.6653, 12.8748, 12.2667)T ,
b=(-8.24553, -13.5649, -16.076, -5.32895, -3.31081, -
4.61294, -10.6503, -13.7665, -8.88706, -17.1664, -
16.3556)T ,
c=(2.0614, 3.3912, 4.019, 1.3322, 0.8277, 1.1532, 2.6626,
3.4416, 2.2218, 4.2916, 4.0889)T ,
x̃=(-5.9398e-021, 1.7293, 8.3477e-020, -6.5621e-
020, 0.33207, 1.2828e-020,
2.9099e-020, 0.48183, 0.013795, -1.8691e-019, 0.40528)T .

Example 8.

a=(14.5972, 11.677, 8.63457, 5.46258, 3.80776, 6.92992,
5.15274, 5.32616, 1.15266, 7.94597, 5.78247)T ,

b=(-19.463, -15.5694, -11.5128, -7.28345, -5.07701,
-9.2399, -6.87032,
-7.10155, -1.53689, -10.5946, -7.70996)T ,
c=(4.8657, 3.8923, 2.8782, 1.8209, 1.2693, 2.31, 1.7176,
1.7754, 0.38422, 2.6487, 1.9275)T ,
x̃=(0, 1.5793e-032, 3.6978e-032, 1.8209, 1.438e-
032, -1.5407e-033, 2.8273e-033, 1.0785e-032, -2.4074e-
032, 0.04809, 0.10663)T .

Example 9.

a=(13.1485, 2.74604, 0.61563, 11.0912, 3.86477, 4.68572,
5.06805, 9.43611, 3.05993, 11.0927, 4.85062)T ,
b=(-17.5314, -3.66139, -0.820841, -14.7883, -5.15303, -
6.24763, -6.75739, -12.5815, -4.07991, -14.7903, -
6.46749)T ,
c=(4.3828, 0.91535, 0.20521, 3.6971, 1.2883, 1.5619,
1.6893, 3.1454, 1.02, 3.6976, 1.6169)T ,
x̃=(1.6105e-034, -5.7778e-034, -3.8519e-
034, 0, 0.20521, 0, 0, -7.7037e-034, 1.02, 4.6689e-
035, -4.5613e-034)T .

Example 10.

a=(8.61067, 14.6349, 14.1092, 12.0477, 7.73585, 4.98874,
1.39492, 10.2659 7.27186, 14.5349, 0.164902)T ,
b=(-3.05486, -10.4141, -12.3622, -5.88926, -19.7598, -
11.352, -12.1663, -18.5229,
-1.88139, -4.38441, -18.861)T ,
c=(4.4414, 4.5866, 3.5612, 4.2102, 2.0438, 2.715, 4.4867,
0.16875, 0.7962, 0.84141, 2.549)T ,

x̃=(4.6222e-033, 6.5482e-033, 2.157e-
032, 0.84141, 1.7076, 0.16745, 1.3482e-033, -6.5482e-
033, 0.16875, -1.5407e-033, -5.7778e-033)T .

Example 11.

a=(4.0459, 3.4301, 0.25348, 2.7333, 0.69564,
0.69773, 3.5446, 0.0075284, 8.7518, 8.4621, 2.9769,
11.106, 8.6258, 11.255, 0.052249)T ,
b=(-3.7016, -1.9931, -16.817, -4.6917, -2.9847, -15.612, -
11.311, -0.055569, -11.985, -4.4391, -1.4239, -7.6251, -
6.9061, -7.8518, -6.1528)T ,
c=(4.5771, 3.1429, 332.37, 9.5166, 21.478, 111.94, 16.87,
36.953, 6.8877, 3.5423, 3.1726, 4.0753, 4.7842, 3.9894,
589.34)T ,
x̃=(0, 0, 0, 1.4896 0, 0, 0, 0, 1.6533, 0.8239, 0.8242, 0.9427, 0,
0.9516, 0)T .

Example 12.

a=(1.95768, 8.03563, 8.69044, 4.57666, 6.45133,
6.90871, 8.53513, 7.77198, 6.0139, 6.12716, 14.539,
7.18362, 4.46336, 3.71163, 8.8661, 3.6463, 3.14693,
6.00674, 3.66249, 3.08932, 11.4875, 6.58181, 5.22211,
8.32127, 7.02947, 7.13808, 5.37541)T ,
b=(-2.61024, -10.7142, -11.5873, -6.10221, -8.60177, -
9.21162, -11.3802, -10.3626 -8.01853, -8.16955,
-19.3853, -9.57816, -5.95115, -4.94884, -11.8215, -4.86173,
-4.1959, -8.00898, -4.88332, -4.1191, -15.3167, -8.77575,
-6.96281, -11.095, -9.37263, -9.51744, -7.16722)T ,
c=(0.65256, 2.6785, 2.8968, 1.5256, 2.1504, 2.3029, 2.845,
2.5907, 2.0046, 2.0424, 4.8463, 2.3945, 1.4878, 1.2372,
2.9554, 1.2154, 1.049, 2.0022, 1.2208, 1.0298,
3.8292, 2.1939, 1.7407, 2.7738, 2.3432, 2.3794, 1.7918)T ,
x̃=(0.65256 5.5931e-034, -3.9719e-034, 5.7778e-034, -
6.9396e-034, 3.6323e-034, -2.0704e-033, 1.2467e-034,
2.2479e-034, -7.7037e-034, 2.0222e-033, -3.2972e-034,
1.8296e-033, -2.8889e-034, 0.67434, 0.16646, 0.39642,
4.6097e-034 -4.1982e-034, -1.9259e-034, -2.1667e-034,
-6.1389e-034, -6.0185e-034, -3.135e-034, 1.9259e-033,
6.9127e-034, 1.8432e-034)T .

V. CONCLUSION

We have considered the network utility maximization prob-
lem with a monotonic increasing objective function. In order
to solve it numerically, we derived a new global optimality
condition for the problem. Based on the global optimality
conditions, we proposed a numerical algorithm which uses
linear programming as subproblems. Efficiency of the algo-
rithm depends on a number of points of the level set of
the function. The algorithm generates a sequence of local
maximizers. The proposed method can be combined with other
global optimization methods. Further investigations has to be
done in this direction in the near future. This paper is a prelim-
inary step towards use of global optimality conditions in non-
concave utility maximization problems. Results of numerical
experiments are provided.
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